如今,算法在控制或影响我们生活的各个方面的许多技术系统中起着关键作用。结果,提供解释以满足用户和组织的需求,越来越多地受到法律法规,行为准则和公众的期望。但是,由于法律和法规没有规定如何满足这种期望,因此通常会留下组织来设计自己的解释性方法,不可避免地增加合规性和良好的治理成本。因此,我们提出了“通过设计的解释性”,这是一种以主动措施为特征的整体方法,包括在决策系统设计中的解释能力。本文介绍了软件工程工作流程中解释性方法的技术步骤,以实现域专家针对特定应用程序上下文提出的要求的解释能力。解释性逐设计方法的输出是一组配置,允许可重复使用的服务(称为解释助手)利用应用程序提供的日志并创建可以查询以提取相关数据点的出处痕迹,而这又可以是用于解释计划,以构建向消费者个性化的解释。遵循这些步骤,组织将能够设计其决策系统,以产生满足指定要求的解释,无论是根据法律,法规或业务需求而设计的。我们将方法应用于两个应用程序,从而部署了解释助理,展示了解释功能。最后,测量了相关的开发成本,表明构建解释的方法在开发时间方面是可以探讨的,每个解释句子可能低至两个小时。
translated by 谷歌翻译
This technical report presents GPS++, the first-place solution to the Open Graph Benchmark Large-Scale Challenge (OGB-LSC 2022) for the PCQM4Mv2 molecular property prediction task. Our approach implements several key principles from the prior literature. At its core our GPS++ method is a hybrid MPNN/Transformer model that incorporates 3D atom positions and an auxiliary denoising task. The effectiveness of GPS++ is demonstrated by achieving 0.0719 mean absolute error on the independent test-challenge PCQM4Mv2 split. Thanks to Graphcore IPU acceleration, GPS++ scales to deep architectures (16 layers), training at 3 minutes per epoch, and large ensemble (112 models), completing the final predictions in 1 hour 32 minutes, well under the 4 hour inference budget allocated. Our implementation is publicly available at: https://github.com/graphcore/ogb-lsc-pcqm4mv2.
translated by 谷歌翻译
The demonstrated success of transfer learning has popularized approaches that involve pretraining models from massive data sources and subsequent finetuning towards a specific task. While such approaches have become the norm in fields such as natural language processing, implementation and evaluation of transfer learning approaches for chemistry are in the early stages. In this work, we demonstrate finetuning for downstream tasks on a graph neural network (GNN) trained over a molecular database containing 2.7 million water clusters. The use of Graphcore IPUs as an AI accelerator for training molecular GNNs reduces training time from a reported 2.7 days on 0.5M clusters to 1.2 hours on 2.7M clusters. Finetuning the pretrained model for downstream tasks of molecular dynamics and transfer to a different potential energy surface took only 8.3 hours and 28 minutes, respectively, on a single GPU.
translated by 谷歌翻译
数字双技术被认为是现代工业发展的组成部分。随着技术Internet技术(IoT)技术的快速发展以及自动化趋势的增加,虚拟世界与物理世界之间的整合现在可以实现生产实用的数字双胞胎。但是,数字双胞胎的现有定义是不完整的,有时是模棱两可的。在此,我们进行了历史审查,并分析了数字双胞胎的现代通用观点,以创建其新的扩展定义。我们还审查并讨论了在安全至关重要的机器人技术应用中数字双胞胎中现有的工作。特别是,由于环境挑战,数字双胞胎在工业应用中的使用需要自动和远程操作。但是,环境中的不确定性可能需要对机器人进行仔细监控和快速适应,这些机器人需要防止安全和成本效益。我们展示了一个案例研究,以开发针对安全至关重要的机器人臂应用框架,并提出系统性能以显示其优势,并讨论未来的挑战和范围。
translated by 谷歌翻译
Digital Twin Technology在现代工业发展中起着关键作用。尤其是,随着技术的技术进步(IoT)以及自主权的日益增长的趋势,配备多传感器的机器人技术可以创建实用的数字双胞胎,这在运营,维护和安全的工业应用程序中特别有用。在此,我们演示了一个现实世界中的数字双胞胎,其中包括安全至关重要的机器人应用程序,并带有Franka-Emika-Panda机器人臂。我们开发并展示了一个避免动态障碍物的边缘辅助协作数字双胞胎,这对于在工业物联网中不确定和动态的环境中运行时可以实时适应机器人。
translated by 谷歌翻译
在处理机器学习模型(例如图形神经网络(GNN))中的一批图表时,通常将几个小图组合到一个整体图中以加速处理并减少填充的开销。例如,这是PYG库中支持的。但是,小图的尺寸对于节点和边缘的数量可能会有很大的变化,因此,组合图的大小仍然可能有很大差异,尤其是对于小批量大小而言。因此,仍然产生过多的填充和浪费计算的成本。本文提出了一种新方法 - 元组包装 - 用于生成导致最小开销的批次。该算法扩展了最近引入的序列填料方法,以在(| nodes |,| edges |)的2D元组上工作。单调启发式词被应用于元组值的2D直方图,以定义填充直方图箱的优先级,以及目标以达到节点数量和边缘数量的限制。实验验证了多个数据集上算法的有效性。
translated by 谷歌翻译
数百万患者患有世界各地的罕见疾病。然而,罕见疾病的样品远小于常见疾病。此外,由于医疗数据的敏感性,医院通常不愿意分享患者信息,以引用隐私问题的数据融合。这些挑战使传统的AI模型难以提取疾病预测目的的稀有疾病特征。在本文中,我们通过提出基于联邦荟萃学习的稀有疾病预测的新方法来克服这种限制。为了提高稀有疾病的预测准确性,我们设计了一种基于关注的元学习(ATML)方法,根据基础学习者的测量培训效果,动态调整对不同任务的关注。另外,提出了一种基于动态权重的融合策略,以进一步提高联合学习的准确性,这基于每个本地模型的准确性动态选择客户端。实验表明,随着五次镜头,我们的方法以准确性和速度为原始联合元学习算法进行了出差。与每个医院的本地模型相比,所提出的模型的平均预测精度增加了13.28%。
translated by 谷歌翻译
随着Terahertz(THZ)信号产生和辐射方法的最新进展,关节通信和传感应用正在塑造无线系统的未来。为此,预计将在用户设备设备上携带THZ光谱,以识别感兴趣的材料和气态组件。 THZ特异性的信号处理技术应补充这种对THZ感应的重新兴趣,以有效利用THZ频带。在本文中,我们介绍了这些技术的概述,重点是信号预处理(标准的正常差异归一化,最小值 - 最大归一化和Savitzky-Golay滤波),功能提取(主成分分析,部分最小二乘,t,T,T部分,t部分,t部分正方形,T - 分布的随机邻居嵌入和非负矩阵分解)和分类技术(支持向量机器,k-nearest邻居,判别分析和天真的贝叶斯)。我们还通过探索他们在THZ频段的有希望的传感能力来解决深度学习技术的有效性。最后,我们研究了在联合通信和传感的背景下,研究方法的性能和复杂性权衡;我们激励相应的用例,并在该领域提供未来的研究方向。
translated by 谷歌翻译